
APIs and CLIs for
Independent Evaluations

Version 1.1

June 11, 2019

What is the ActEV Evaluation CLI?

• The ActEV Evaluation CLI is a prescribed set of command line
utilities that prescribe both the function of each utility and the
required command line options

• It is a simplified view of installing a software system and running the
system

• It is designed as an ‘Abstract Command Line Interface’ (see slide 3)
• It is written in Python3

What is an “Abstract Command Line Interface”?

Definition:
An abstract CLI is a generic set of command line utilities used as a basis for
creating specific utilities that conform to a specific protocol, or the set of
operations it supports. Abstract CLIs are not implemented directly but rather
delegated to a specific implementation.

Abstract CLIs are useful when creating user interactions that model reality
because they make it possible to specify an invariant level of functionality in
the top level utilities, but leave the implementation to the developer.

* Definition adapted from a “Abstract Class” defintion defined on Technopedia
https://www.techopedia.com/definition/17408/abstract-class

Submission
Information
Collection

•Specifies where to download the
system submission from

•Supported tasks/activities
•System output on a validation video

and activities
•Sent via the ActEV scoring server

ActEV
Evaluation
Command

Line Interface

•Controls processing steps of an ActEV
system

This slide
deck’s
focus

ActEV Evaluation CLI Design Considerations
• Flexibly support many types of system designs:

• Single git repo, single container, multi-container
• Scalable for multi-node solutions in the future

• Rigorous validation
• Developer-supplied expected system output on a common data set
• Conformance tests on the Execution CLI interface components
• Status checking code written by the developer to make sure processing progress is being made

• Simple parallelization model to process a test collection by dividing a data set into ‘Chunks’
• Each ‘chunk’ is a set of videos/activities that a system will process on a computation Node
• Each chunk must be processed separately
• Systems can leverage content extraction/processing within chunk
• The developer will implement a CLI component to efficiently design the chunks for their system

• Could be: single video/single activity → single video/all activities → all videos collected at T
0
/all activities

• Fault detection and recovery
• Simplest user model possible - chunk processing either fails or succeeds
• Compute performance on intermediate and incomplete test collection runs

Submission Information

• System Name
• System URL and access credentials
• Supported evaluation task: AD
• Known activities: the set of pre-trained activities
• Validation set output:

• The file json, activity json, chunk json, and the output produce by the developer at
the developer’s site.

• Compute Node Limits:
• Activities-per-chunk – max number of activities processable on a compute Node
• File-streams-per-chunk – max number of camera views per compute Node

ActEV Evaluation CLI Overview
• NIST implemented

• ActEV-get-system – Downloads a credentialed, web-accessible content into a NIST-supplied directory name <SYS>.
• ActEV-validate-system – checks the structure of a <SYS> directory after ActEV-system-setup is run. Checks for expected API executables, required command line options,

and existing system output for validation sets
• ActEV-exec – a default wrapper script that calls a developer-implemented API in <SYS> given the system config file, file json, activity json, chunk json, video location,

system cache dir. Captures time stamps, resource usage, etc.
• Supports: Independent video/activites videos and activities are processed independently

• ActEV-validate-execution - Test the execution of the system on each validation data set provided in <SYS> comparing the newly generated to the expected output and
the reference

• Developer- implemented from common stub provided by NIST so as to have a consistent command line.
• <SYS>/bin/ActEV-system-setup – runs any compilation/preparation steps for the system. <SYS> passes ActEV-validate-system after completion. Only this step should

expect un-fettered internet access.
• <SYS>/bin/ActEV-design-chunks* – given a file json and activity json, produce a chunk json that is suitable for the system
• <SYS>/bin/ActEV-experiment-init* – specifies the system config file, file json, activity json, chunk json, video location, system cache dir, start servers (if used), starts

cluster (future functionality)
• For a given ChunkID:

• <SYS>/bin/ActEV-pre-process-chunk* – specifies the ChunkID

• <SYS>/bin/ActEV-process-chunk* – detection for ChunkID

• <SYS>/bin/ActEV-post-process-chunk* – fusion within ChunkID

• <SYS>/bin/ActEV-reset-chunk* – delete all cached information for ChunkID so that the chunk can be re-run

• <SYS>/bin/ActEV-merge-chunks* – returns NIST-compliant, scorable system output for the listed chunks. Can be called at any time to get intermediate results, minimal
computation expected

• <SYS>/bin/ActEV-experiment-cleanup* – close any servers, terminates cluster (future functionality), etc.
• <SYS>/bin/ActEV-status – executable at any time after ActEV-experiment-init exits and before ActEV-cleanup exits.

• Report ‘ok’ or times out

• Retrieves log files

* CLI components that must be implemented so that they will work within a confined network that does not have general WWW Access

ActEV Evaluation CLI Definitions: <SYS>
directory

• <SYS> - a directory, created to contain all filesystem files for use by
the analytic

• For example:
• NIST executes: ActEV-get-system -u http://some.com/forJon -S ”/tmp/Test1”

• To build a CLI Compliant <SYS> directory
• /tmp/Test1/bin/ActEV-system-setup.py

• /tmp/Test1/bin/…
• /tmp/Test1/myDockerInfo/…

http://some.com/forJon

ActEV Evaluation CLI Compliant <SYS> directory

The <SYS> directory must be structured as follows:

../<SYS>/bin/ - The CLI-compliant executables (e.g., ActEV-validate-system.py, etc.)

../<SYS>/src/ - Developer-implemented entry points (See the CLI GIT Repo)

../<SYS>/container-output/ - a directory containing the site-generated output for at least one validation
dataset. For each data set, the developer will provide the file, activity, chunk, and output jsons
used/generated by the system on the developer’s hardware. The naming convention will be:

<DATASET>_<FILE>.json

Where: <DATASET> :== one of published data sets. E.g., ActEV1B-V1

<FILE> :== “file”, “activity”, “chunk”, “output”

ActEV Evaluation CLI Definitions: Chunks

• A ‘chunk’ is a set of video files and activities that the user can process independently on a
DIVA Node.

• Chunks are specified in a new, 3rd input JSON file for the system

{ "Closing": {
 "objectTypes": [”People"],
 "objectTypeMap": { ”People": "*People*"} },
 "Closing_Trunk": {
 "objectTypes": ["Construction_Vehicle", "Vehicle"],
 "objectTypeMap": { "Vehicle": "*Vehicle*"} },
 "Entering": {
 "objectTypes": ["Construction_Vehicle", "Vehicle"],
 "objectTypeMap": { "Vehicle": "*Vehicle*"} }
}

Activity JSON

{ "VIRAT_S_000003.mp4": {
 "framerate": 30.0, "selected": { "1": 1, "20941": 0 }
 },
 "VIRAT_S_000200_04_000937_001443.mp4": {
 "framerate": 30.0, "selected": { "1": 1, "15165": 0 }
 },
 "VIRAT_S_000200_06_001693_001824.mp4": {
 "framerate": 30.0, "selected": { "1": 1, "3908": 0 }
 },
 "VIRAT_S_000202_01_001334_001520.mp4": {
 "framerate": 30.0, "selected": { "1": 1, "5566": 0 }
 }
}

File JSON

{”Chunk1": {
 ”activities": { ”Closing”, “ClosingTrunk”, ”Entering” }
 ”files": { “VIRAT_S_000003.mp4”,
 “VIRAT_S_000200_04_000937_001443.mp4” }
 },
”Chunk2": {
 ”activities": { ”Closing”, “ClosingTrunk”, ”Entering” }
 ”files": { “VIRAT_S_000200_06_001693_001824.mp4”,
 “VIRAT_S_000202_01_001334_001520.mp4” }
 },
}

Chunk JSON

Example: Define 2 chunks with two videos each processing all activities

ActEV Evaluation CLI Process Diagrams

Developer NIST

ActEV-get-system

Submit System

Report Failure

ActEV-system-setup

ActEV-system-validate

Report Failure

Report Failure

Prepare Phase

Developer NIST

ActEV-design-chunks

ActEV-experiment-init

ActEV-pre-process-chunk

Report Failure

Report Failure

Corpus Processing Phase

ActEV-process-chunk

Report Failure

ActEV-post-process-chunk

Report Failure

ActEV-merge-chunk

Report Failure

ActEV-experiment-cleanup

For Each Chunk

<SYS> minimally
contains

ActEV-system_set
up

<SYS> contains all
ActEV-* CLI

WWW access disabled

System Delivery Validation Process

Developer

ActEV-get-system

ActEV-system-setup

NIST

ActEV-system-validate

ActEV-validate-execution

Success

Report Failure

Report Failure Corpus Processing Phase:
Validation Data Set

Submit System URL

Report Success

Slide Version History
● 20180907 - V1.1
● 20190225 - Added contextual slides. No content changes

